
ILLUMINATED
COMPUTER SCIENCE

N E L L D A L E
The University of Texas at Austin

J O H N L E W I S
Virginia Tech

S I X T H E D I T I O N

Onion: © matka_Wariatka/ShutterStock, Inc.

World Headquarters
Jones & Bartlett Learning
5 Wall Street
Burlington, MA 01803
978-443-5000
info@jblearning.com
www.jblearning.com

Jones & Bartlett Learning books and products are available through most bookstores and online booksellers. To contact Jones
& Bartlett Learning directly, call 800-832-0034, fax 978-443-8000, or visit our website, www.jblearning.com.

Substantial discounts on bulk quantities of Jones & Bartlett Learning publications are available to corporations,
professional associations, and other qualifed organizations. For details and specifc discount information, contact
the special sales department at Jones & Bartlett Learning via the above contact information or send an email to
specialsales@jblearning.com.

Copyright © 2016 by Jones & Bartlett Learning, LLC, an Ascend Learning Company

All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form, electronic
or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written
permission from the copyright owner.

The content, statements, views, and opinions herein are the sole expression of the respective authors and not that of Jones &
Bartlett Learning, LLC. Reference herein to any specifc commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not constitute or imply its endorsement or recommendation by Jones & Bartlett Learning,
LLC and such reference shall not be used for advertising or product endorsement purposes. All trademarks displayed are the
trademarks of the parties noted herein. Computer Science Illuminated, Sixth Edition is an independent publication and has not
been authorized, sponsored, or otherwise approved by the owners of the trademarks or service marks referenced in
this product.

There may be images in this book that feature models; these models do not necessarily endorse, represent, or participate in
the activities represented in the images. Any screenshots in this product are for educational and instructive purposes only.
Any individuals and scenarios featured in the case studies throughout this product may be real or fctitious, but are used for
instructional purposes only.

06951-8

Production Credits

Library of Congress Cataloging-in-Publication Data
Dale, Nell.
 Computer science illuminated / Nell Dale, PhD, University of Texas-Austin, Department of Computer Science,
John A. Lewis, Virginia Tech. — Sixth edition.
 pages cm
 Includes bibliographical references and index.
 ISBN 978-1-284-05591-7 (pbk.) 1. Computer science. I. Lewis, John, 1963- II. Title.
 QA76.D285 2015
 004—dc23
 2014032093

6048

Printed in the United States of America
19 18 17 16 15 10 9 8 7 6 5 4 3 2 1

Publisher: Cathy L. Esperti
Acquisitions Editor: Laura Pagluica
Editorial Assistant: Taylor Ferracane
Director of Production: Amy Rose
Associate Production Editor: Sara Kelly
Associate Marketing Manager: Cassandra Peterson
Art Development Editor: Joanna Lundeen
Art Development Assistant: Shannon Sheehan

VP, Manufacturing and Inventory Control: Therese Connell
Composition: Cenveo Publisher Services
Cover Design: Kristin E. Parker
Rights and Photo Research Coordinator: Amy Rathburn
Cover Image: © Sergey Nivens/Shutterstock, Inc.
Printing and Binding: Courier Companies
Cover Printing: Courier Companies

mailto:info@jblearning.com
http://www.jblearning.com
http://www.jblearning.com
mailto:specialsales@jblearning.com

iii

Onion: © matka_Wariatka/ShutterStock, Inc.; Nebula: © Sergey Nivens/Shutterstock, Inc.

To my wife, Sharon, and our
children, Justin, Kayla, Nathan,
and Samantha.
—John Lewis

To all the students who will use this
book: It is written for you.
—Nell Dale

iv

John Lewis, Virginia Tech
John Lewis is a leading educator and author in the feld of computer
science. He has written a market-leading textbook on Java software and
program design. After earning his PhD in Computer Science, John spent
14 years at Villanova University in Pennsylvania. He now teaches com-
puting at Virginia Tech, his alma mater, and works on textbook projects
out of his home. He has received numerous teaching awards, including
the University Award for Teaching Excellence and the Goff Award for
Outstanding Teaching. His professional interests include object-oriented
technologies, multimedia, and software engineering. In addition to teach-
ing and writing, John actively participates in the ACM Special Interest
Group on Computer Science Education (SIGCSE) and fnds time to spend
with his family and in his workshop.

Nell Dale, The University of Texas
at Austin
Well-respected in the feld of computer science education, Nell Dale has
served on the faculty of The University of Texas at Austin, for more than
25 years and has authored over 40 undergraduate Computer Science
textbooks. After receiving her BS in Mathematics and Psychology from
the University of Houston, Nell entered The University of Texas at Austin,
where she earned her MA in Mathematics and her PhD in Computer
Science. Nell has made signifcant contributions to her discipline through
her writing, research, and service. Nell’s contributions were recognized
in 1996 with the ACM SIGCSE Award for Outstanding Contributions in
Computer Science Education and in 2001 with the ACM Karl V. Karlstrom
Outstanding Educator Award. She was elected an ACM Fellow in 2010.
In 2013, she received the IEEE Taylor L. Booth Education Award. Nell has
retired from full-time teaching, giving her more time to write, travel, and
play tennis and bridge. She currently resides in Austin, Texas.

Onion: © matka_Wariatka/ShutterStock, Inc.

v

Onion: © matka_Wariatka/ShutterStock, Inc.

1 Laying the Groundwork 2
Chapter 1 The Big Picture 3

2 The Information Layer 34
Chapter 2 Binary Values and Number Systems 35
Chapter 3 Data Representation 55

3 The Hardware Layer 92
Chapter 4 Gates and Circuits 93
Chapter 5 Computing Components 121

4 The Programming Layer 152
Chapter 6 Low-Level Programming Languages and Pseudocode 153
Chapter 7 Problem Solving and Algorithms 197
Chapter 8 Abstract Data Types and Subprograms 247
Chapter 9 Object-Oriented Design and High-Level Programming Languages 287

5 The Operating Systems Layer 336
Chapter 10 Operating Systems 337
Chapter 11 File Systems and Directories 369

6 The Applications Layer 394
Chapter 12 Information Systems 395
Chapter 13 Artifcial Intelligence 425
Chapter 14 Simulation, Graphics, Gaming, and Other Applications 459

7 The Communications Layer 500
Chapter 15 Networks 501
Chapter 16 The World Wide Web 531
Chapter 17 Computer Security 563

8 In Conclusion 592
Chapter 18 Limitations of Computing 593

BRIEF CONTENTS

vi

Onion: © matka_Wariatka/ShutterStock, Inc.

1 Laying the Groundwork 2
Chapter 1 The Big Picture 3

1.1 Computing Systems 4

Layers of a Computing System 4
Abstraction 6

1.2 The History of Computing 9

A Brief History of Computing Hardware 9
A Brief History of Computing Software 19
Predictions 25

1.3 Computing as a Tool and a Discipline 26

Summary 29
Ethical Issues: Digital Divide 30
Key Terms 31
Exercises 31
Thought Questions 33

2 The Information Layer 34
Chapter 2 Binary Values and Number Systems 35

2.1 Numbers and Computing 36

2.2 Positional Notation 36

Binary, Octal, and Hexadecimal 38
Arithmetic in Other Bases 41
Power-of-2 Number Systems 42
Converting from Base 10 to Other Bases 44
Binary Values and Computers 45

Summary 48
Ethical Issues: The FISA Court 49
Key Terms 49
Exercises 50
Thought Questions 53

Chapter 3 Data Representation 55

3.1 Data and Computers 56

Analog and Digital Data 57
Binary Representations 59

CONTENTS

Onion: © matka_Wariatka/ShutterStock, Inc.

Contents

vii

3.2 Representing Numeric Data 61

Representing Negative Values 61
Representing Real Numbers 65

3.3 Representing Text 68

The ASCII Character Set 69
The Unicode Character Set 70
Text Compression 71

3.4 Representing Audio Data 76

Audio Formats 78
The MP3 Audio Format 78

3.5 Representing Images and Graphics 79

Representing Color 79
Digitized Images and Graphics 81
Vector Representation of Graphics 82

3.6 Representing Video 83

Video Codecs 83

Summary 85
Ethical Issues: The Fallout from Snowden’s Revelations 86
Key Terms 86
Exercises 87
Thought Questions 91

3 The Hardware Layer 92
Chapter 4 Gates and Circuits 93

4.1 Computers and Electricity 94

4.2 Gates 96

NOT Gate 96
AND Gate 97
OR Gate 98
XOR Gate 98
NAND and NOR Gates 99
Review of Gate Processing 100
Gates with More Inputs 101

Onion: © matka_Wariatka/ShutterStock, Inc.

Contents

viii

4.3 Constructing Gates 101

Transistors 102

4.4 Circuits 104

Combinational Circuits 104
Adders 108
Multiplexers 110

4.5 Circuits as Memory 111

4.6 Integrated Circuits 112

4.7 CPU Chips 113

Summary 113
Ethical Issues: Codes of Ethics 114
Key Terms 116
Exercises 116
Thought Questions 119

Chapter 5 Computing Components 121

5.1 Individual Computer Components 122

5.2 The Stored-Program Concept 127

von Neumann Architecture 129
The Fetch–Execute Cycle 133
RAM and ROM 135
Secondary Storage Devices 136
Touch Screens 141

5.3 Embedded Systems 143

5.4 Parallel Architectures 144

Parallel Computing 144
Classes of Parallel Hardware 146

Summary 147
Ethical Issues: Is Privacy a Thing of the Past? 148
Key Terms 148
Exercises 149
Thought Questions 151

Onion: © matka_Wariatka/ShutterStock, Inc.

Contents

ix

4 The Programming Layer 152
Chapter 6 Low-Level Programming Languages and Pseudocode 153

6.1 Computer Operations 154

6.2 Machine Language 154

Pep/8: A Virtual Computer 155

6.3 A Program Example 162

Hand Simulation 163
Pep/8 Simulator 164

6.4 Assembly Language 166

Pep/8 Assembly Language 167
Assembler Directives 168
Assembly-Language Version of Program Hello 168
A New Program 169
A Program with Branching 171
A Program with a Loop 174

6.5 Expressing Algorithms 176

Pseudocode Functionality 176
Following a Pseudocode Algorithm 180
Writing a Pseudocode Algorithm 182
Translating a Pseudocode Algorithm 185

6.6 Testing 188

Summary 189
Ethical Issues: Software Piracy 191
Key Terms 192
Exercises 192
Thought Questions 195

Chapter 7 Problem Solving and Algorithms 197

7.1 How to Solve Problems 198

Ask Questions 199
Look for Familiar Things 199
Divide and Conquer 200

Onion: © matka_Wariatka/ShutterStock, Inc.

Contents

x

Algorithms 200
Computer Problem-Solving Process 202
Summary of Methodology 203
Testing the Algorithm 204

7.2 Algorithms with Simple Variables 205

An Algorithm with Selection 205
Algorithms with Repetition 206

7.3 Composite Variables 212

Arrays 212
Records 213

7.4 Searching Algorithms 214

Sequential Search 214
Sequential Search in a Sorted Array 215
Binary Search 218

7.5 Sorting 220

Selection Sort 221
Bubble Sort 224
Insertion Sort 226

7.6 Recursive Algorithms 227

Subprogram Statements 227
Recursive Factorial 229
Recursive Binary Search 230
Quicksort 230

7.7 Important Threads 234

Information Hiding 234
Abstraction 235
Naming Things 236
Testing 237

Summary 237
Ethical Issues: Open-Source Software 238
Key Terms 240
Exercises 240
Thought Questions 245

Chapter 8 Abstract Data Types and Subprograms 247

8.1 What Is an Abstract Data Type? 248

8.2 Stacks 248

Onion: © matka_Wariatka/ShutterStock, Inc.

Contents

xi

8.3 Queues 249

8.4 Lists 250

8.5 Trees 253

Binary Trees 253
Binary Search Trees 256
Other Operations 261

8.6 Graphs 262

Creating a Graph 264
Graph Algorithms 265

8.7 Subprograms 271

Parameter Passing 272
Value and Reference Parameters 274

Summary 278
Ethical Issues: Workplace Monitoring 279
Key Terms 280
Exercises 280
Thought Questions 285

Chapter 9 Object-Oriented Design and High-Level Programming Languages 287

9.1 Object-Oriented Methodology 288

Object Orientation 288
Design Methodology 289
Example 292

9.2 Translation Process 297

Compilers 298
Interpreters 298

9.3 Programming Language Paradigms 301

Imperative Paradigm 301
Declarative Paradigm 302

9.4 Functionality in High-Level Languages 304

Boolean Expressions 305
Data Typing 307
Input/Output Structures 311
Control Structures 313

Onion: © matka_Wariatka/ShutterStock, Inc.

Contents

xii

9.5 Functionality of Object-Oriented Languages 320

Encapsulation 320
Classes 321
Inheritance 323
Polymorphism 324

9.6 Comparison of Procedural and Object-Oriented Designs 325

Summary 326
Ethical Issues: Hoaxes and Scams 328
Key Terms 329
Exercises 330
Thought Questions 335

5 The Operating Systems Layer 336
Chapter 10 Operating Systems 337

10.1 Roles of an Operating System 338

Memory, Process, and CPU Management 340
Batch Processing 341
Timesharing 342
Other OS Factors 343

10.2 Memory Management 344

Single Contiguous Memory Management 346
Partition Memory Management 347
Paged Memory Management 349

10.3 Process Management 352

The Process States 352
The Process Control Block 353

10.4 CPU Scheduling 354

First Come, First Served 355
Shortest Job Next 356
Round Robin 356

Summary 358
Ethical Issues: Medical Privacy: HIPAA 360
Key Terms 361
Exercises 362
Thought Questions 367

Onion: © matka_Wariatka/ShutterStock, Inc.

Contents

xiii

Chapter 11 File Systems and Directories 369

11.1 File Systems 370

Text and Binary Files 370
File Types 371
File Operations 373
File Access 374
File Protection 375

11.2 Directories 376

Directory Trees 377
Path Names 379

11.3 Disk Scheduling 381

First-Come, First-Served Disk Scheduling 383
Shortest-Seek-Time-First Disk Scheduling 383
SCAN Disk Scheduling 384

Summary 386
Ethical Issues: Privacy: Opt-In or Opt-Out? 388
Key Terms 389
Exercises 389
Thought Questions 393

6 The Applications Layer 394
Chapter 12 Information Systems 395

12.1 Managing Information 396

12.2 Spreadsheets 396

Spreadsheet Formulas 399
Circular References 402
Spreadsheet Analysis 405

12.3 Database Management Systems 406

The Relational Model 407
Relationships 409
Structured Query Language 411
Database Design 413

12.4 E-Commerce 414

Summary 415
Ethical Issues: Politics and the Internet: The Candidate’s View 417

Onion: © matka_Wariatka/ShutterStock, Inc.

Contents

xiv

Key Terms 418
Exercises 419
Thought Questions 423

Chapter 13 Artifcial Intelligence 425

13.1 Thinking Machines 426

The Turing Test 427
Aspects of AI 429

13.2 Knowledge Representation 429

Semantic Networks 431
Search Trees 433

13.3 Expert Systems 436

13.4 Neural Networks 438

Biological Neural Networks 438
Artifcial Neural Networks 439

13.5 Natural Language Processing 441

Voice Synthesis 442
Voice Recognition 443
Natural Language Comprehension 444

13.6 Robotics 446

The Sense–Plan–Act Paradigm 446
Subsumption Architecture 448
Physical Components 450

Summary 451
Ethical Issues: Initial Public Offerings 452
Key Terms 453
Exercises 453
Thought Questions 457

Chapter 14 Simulation, Graphics, Gaming, and Other Applications 459

14.1 What Is Simulation? 460

Complex Systems 460
Models 461
Constructing Models 461

Onion: © matka_Wariatka/ShutterStock, Inc.

Contents

xv

14.2 Specifc Models 463

Queuing Systems 463
Meteorological Models 466
Computational Biology 472
Other Models 473
Computing Power Necessary 473

14.3 Computer Graphics 474

How Light Works 476
Object Shape Matters 478
Simulating Light 478
Modeling Complex Objects 480
Getting Things to Move 486

14.4 Gaming 488

History of Gaming 489
Creating the Virtual World 490
Game Design and Development 491
Game Programming 492

Summary 493
Ethical Issues: Gaming as an Addiction 495
Key Terms 496
Exercises 496
Thought Questions 499

7 The Communications Layer 500
Chapter 15 Networks 501

15.1 Networking 502

Types of Networks 503
Internet Connections 505
Packet Switching 508

15.2 Open Systems and Protocols 510

Open Systems 511
Network Protocols 512
TCP/IP 512
High-Level Protocols 514
MIME Types 515
Firewalls 515

Onion: © matka_Wariatka/ShutterStock, Inc.

Contents

xvi

15.3 Network Addresses 516

Domain Name System 518
Who Controls the Internet? 521

15.4 Cloud Computing 521

Summary 523
Ethical Issues: The Effects of Social Networking 525
Key Terms 526
Exercises 527
Thought Questions 529

Chapter 16 The World Wide Web 531

16.1 Spinning the Web 532

Search Engines 533
Instant Messaging 534
Weblogs 535
Cookies 536
Web Analytics 536

16.2 HTML and CSS 537

Basic HTML Elements 541
Tag Attributes 542
More About CSS 543
More HTML5 Elements 546

16.3 Interactive Web Pages 547

Java Applets 547
Java Server Pages 548

16.4 XML 549

16.5 Social Networks 553

Summary 554
Ethical Issues: Gambling and the Internet 557
Key Terms 558
Exercises 558
Thought Questions 561

Chapter 17 Computer Security 563

17.1 Security at All Levels 564

Information Security 564

Onion: © matka_Wariatka/ShutterStock, Inc.

Contents

xvii

17.2 Preventing Unauthorized Access 566

Passwords 567
CAPTCHA 569
Fingerprint Analysis 570

17.3 Malicious Code 571

Antivirus Software 572
Security Attacks 573

17.4 Cryptography 575

17.5 Protecting Your Information Online 578

Security and Portable Devices 580
WikiLeaks 581

Summary 583
Ethical Issues: Blogging 586
Key Terms 587
Exercises 588
Thought Questions 591

8 In Conclusion 592
Chapter 18 Limitations of Computing 593

18.1 Hardware 594

Limits on Arithmetic 594
Limits on Components 600
Limits on Communications 601

18.2 Software 602

Complexity of Software 602
Current Approaches to Software Quality 603
Notorious Software Errors 608

18.3 Problems 610

Comparing Algorithms 611
Turing Machines 618
Halting Problem 621
Classifcation of Algorithms 623

Summary 625
Ethical Issues: Therac-25: Anatomy of a Disaster 626

Onion: © matka_Wariatka/ShutterStock, Inc.

Contents

xviii

Key Terms 627
Exercises 627
Thought Questions 630

Glossary 631
Endnotes 657
Index 667

xix

Onion: © matka_Wariatka/ShutterStock, Inc.

Choice of Topics
In putting together the outline of topics for this CS0 text, we used many
sources. We looked at course catalogue descriptions and book outlines,
and we administered a questionnaire designed to fnd out what you, our
colleagues, thought should be included in such a course. We asked you
and ourselves to do the following:

 ■ Please list four topics that you feel students should master in a
CS0 course if this is the only computer science course they will
take during their college experience.

 ■ Please list four topics that you would like students entering your
CS1 course to have mastered.

 ■ Please list four additional topics that you would like your CS1
students to be familiar with.

The strong consensus that emerged from the intersections of these sources
formed the working outline for this book. Students who master this material
before taking CS1 have a strong foundation upon which to build their
knowledge of computer science. Although our intention was to write a
CS0 text, our reviewers have pointed out that the material also forms
a strong breadth-frst background that can also serve as a companion to a
programming-language introduction to computer science.

Rationale for Organization
This book begins with the history of hardware and software, showing
how a computer system is like an onion. The processor and its machine
language form the heart of the onion, and layers of software and more
sophisticated hardware have been added around this heart, layer by layer.
At the next layer, higher-level languages such as FORTRAN, Lisp, Pascal,
C, C++, and Java were introduced parallel to the ever-increasing explo-
ration of the programming process, using such tools as top-down design
and object-oriented design. Over time, our understanding of the role of
abstract data types and their implementations matured. The operating
system, with its resource-management techniques—including fles on
ever-larger, faster secondary storage media—developed to surround and
manage these programs.

PREFACE

Onion: © matka_Wariatka/ShutterStock, Inc.

Preface

xx

The next layer of the computer system “onion” is composed of sophis-
ticated general-purpose and special-purpose software systems that over-
lay the operating system. Development of these powerful programs was
stimulated by theoretical work in computer science, which makes such
programs possible. The fnal layer comprises networks and network soft-
ware—that is, the tools needed for computers to communicate with one
another. The Internet and the World Wide Web put the fnishing touches
to this layer, and this text culminates with a discussion of security issues
affecting our interaction online.

As these layers have grown over the years, the user
has become increasingly insulated from the computer

system’s hardware. Each of these layers provides an
abstraction of the computing system beneath

it. As each layer has evolved, users of the
new layer have joined with users of inner

layers to create a very large workforce
in the high-tech sector of the global
economy. This book is designed to
provide an overview of the layers,
introducing the underlying hardware
and software technologies, in order to

give students an appreciation and un-
derstanding of all aspects of computing

systems.
Having used history to describe the

formation of the onion from the inside
out, we were faced with a design choice: We

could look at each layer in depth from the in-
side out or the outside in. The outside-in approach

was very tempting. We could peel the layers off one at a time, moving
from the most abstract layer to the concrete machine. However, research
has shown that students understand concrete examples more easily than
abstract ones, even when the students themselves are abstract thinkers.
Thus, we have chosen to begin with the concrete machine and examine
the layers in the order in which they were created, trusting that a thor-
ough understanding of one layer makes the transition to the next abstrac-
tion easier for the students.

Information Layer

Hardware Layer

Programming Layer

Operation Systems Layer

Applications Layer

Communications Layer

Onion: © matka_Wariatka/ShutterStock, Inc.

Preface

xxi

Changes in the Sixth Edition
As always when planning a revision, we asked our colleagues, including
many current users of the text, to give us feedback. We appreciate the
many thoughtful and insightful responses we received.

Updates in the Sixth Edition include a considerable overhaul of Chap-
ters 15 and 16, which are about networks and the World Wide Web. We
include new information about wireless networks, as well as updates to
the top-level domains (TLDs) that are now available. In light of recent de-
velopments in U.S. oversight, we added a discussion about who controls
the Internet. Screenshots and discussions of ping and traceroute utilities
are now included, as well as an enhanced discussion about mobile com-
puting. We completely rewrote the section on HTML in Chapter 16 to re-
fect the most up-to-date practices and the use of Cascading Style Sheets
(CSS). We updated the section on social networks and added a new dis-
cussion of web-based analytics.

In addition to these and other updates, the common features through-
out the book have been completely revised and augmented. The “Ethical
Issues” sections at the end of each chapter have been brought up to date.
The “Did You Know?” sidebars have been updated throughout the book
as well, with the addition of several more that refect new and novel
topics. Finally, the biographical sections throughout have been updated.

The Sixth Edition features a brand new design and layout, with all fg-
ures redrawn and photos updated throughout.

Of course, we also made minor revisions throughout the book to im-
prove and update the coverage, presentation, and examples.

Synopsis
Chapter 1 lays the groundwork, as described in the “Rationale for This
Book’s Organization” section above. Chapters 2 and 3 step back and ex-
amine a layer that is embodied in the physical hardware. We call this
the “information layer” because it refects how data is represented in the
computer. Chapter 2 covers the binary number system and its relation-
ship to other number systems such as decimal (the one we humans use
on a daily basis). Chapter 3 investigates how we take the myriad types of

Onion: © matka_Wariatka/ShutterStock, Inc.

Preface

xxii

data we manage—numbers, text, images, audio, and video—and repre-
sent them in a computer in binary format.

Chapters 4 and 5 discuss the hardware layer. Computer hardware
includes devices such as transistors, gates, and circuits, all of which con-
trol the fow of electricity in fundamental ways. This core electronic cir-
cuitry gives rise to specialized hardware components such as the comput-
er’s central processing unit (CPU) and memory. Chapter 4 covers gates
and electronic circuits; Chapter 5 focuses on the hardware components of
a computer and how they interact within a von Neumann architecture.

Chapters 6 through 9 examine aspects of the programming layer.
Chapter 6 explores the concepts of both machine language and assembly
language programming using Pep/8, a simulated computer. We discuss
the functionality of pseudocode as a way to write algorithms. The con-
cepts of looping and selection are introduced here, expressed in pseudo-
code, and implemented in Pep/8.

Chapter 7 examines the problem-solving process as it relates to
both humans and computers. George Polya’s human problem-solving
strategies guide the discussion. Top-down design is presented as a way
to design simple algorithms. We choose classic searching and sorting
algorithms as the context for the discussion of algorithms. Because algo-
rithms operate on data, we examine ways to structure data so that it can
be more effciently processed. We also introduce subalgorithm (subpro-
gram) statements.

Chapter 8 takes a step further toward abstraction, exploring abstract
data types and containers: composite structures for which we know only
properties or behaviors. Lists, sorted lists, stacks, queues, binary search
trees, and graphs are discussed. The section on subalgorithms is expanded
to include reference and value parameters and parameter passing.

Chapter 9 covers the concepts of high-level programming languag-
es. Because many prominent high-level languages include functionality
associated with object-oriented programming, we detour and frst present
this design process. Language paradigms and the compilation process are
discussed. Pseudocode concepts are illustrated in brief examples from four
programming languages: Python, Visual Basic .NET, C++, and Java.

Chapters 10 and 11 cover the operating system layer. Chapter 10
discusses the resource management responsibilities of the operating sys-

Onion: © matka_Wariatka/ShutterStock, Inc.

Preface

xxiii

tem and presents some of the basic algorithms used to implement these
tasks. Chapter 11 focuses on fle systems, including what they are and
how they are managed by the operating system.

Chapters 12 through 14 cover the application layer. This layer is
made up of the general-purpose and specialized application programs
that are available to the public for solving programs. We divide this layer
into the sub-disciplines of computer science upon which these programs
are based. Chapter 12 examines information systems, Chapter 13 exam-
ines artifcial intelligence, and Chapter 14 examines simulation, graphics,
gaming, and other applications.

Chapters 15 through 17 cover the communication layer. Chapter 15
presents the theoretical and practical aspects of computers communicat-
ing with each other. Chapter 16 discusses the World Wide Web and the
various technologies involved. Chapter 17 examines computer security
and keeping information protected in the modern information age.

Chapters 2 through 17 are about what a computer can do and how.
Chapter 18 concludes the text with a discussion of the inherent limita-
tions of computer hardware and software, including the problems that
can and cannot be solved using a computer. We present Big-O notation as
a way to talk about the effciency of algorithms so that the categories of
algorithms can be discussed, and we use the Halting problem to show that
some problems are unsolvable.

The frst and last chapters form bookends: Chapter 1 describes what a
computing system is and Chapter 18 cautions about what computing sys-
tems cannot do. The chapters between take an in-depth look at the layers
that make up a computing system.

Why Not a Language?
The original outline for this book included an “Introduction to Java”
chapter. Some of our reviewers were ambivalent about including a lan-
guage at all; others wondered why Java would be included and not C++.
We decided to leave the choice to the user. Introductory chapters, format-
ted in a manner consistent with the design of this book, are available for

Onion: © matka_Wariatka/ShutterStock, Inc.

Preface

xxiv

Java, C++, JavaScript, Visual Basic. NET,
Python, SQL, Ruby, Perl, Alice, and Pas-
cal on the book’s website and in hard
copy through Jones & Bartlett Learning.

If the students have enough knowl-
edge and experience to master the in-
troductory syntax and semantics of a
language in addition to the background
material in this book, simply have the
students download the appropriate
chapter. As an alternative, one or all
of these chapters can be used to enrich
the studies of those who have stronger
backgrounds.

Special Features
We have included three special features
in this text in order to emphasize the

Onion: © matka_Wariatka/ShutterStock, Inc.

John Vincent Atanasoff was born in Hamilton,
New York, on October 4, 1903, one of nine chil-
dren. When he was about ten, his father bought
a new slide rule. After reading the instructions,
John Vincent became more interested in the
mathematics involved than in the slide rule
itself. His mother picked up on his interest and
helped him study his father’s old college algebra
book. He continued his interest in mathemat-
ics and science and graduated from high school
in two years. His family moved to Old Chicara,
Florida, where John Vincent graduated from
the University of Florida in 1925 with a degree
in electrical engineering because the universi-
ty didn’t offer a degree in theoretical physics.
A year later, he received a master’s degree in
mathematics from Iowa State College. In 1930,
after receiving his PhD in theoretical physics,
he returned to Iowa State College as an assis-
tant professor in mathematics and physics.

Dr. Atanasoff became interested in f nding
a machine that could do the complex mathe-
matical work he and his graduate students were
doing. He examined computational devices in
existence at that time, including the Monroe
calculator and the IBM tabulator. Upon con-
cluding that these machines were too slow and
inaccurate, he became obsessed with f nding a
solution. He said that at night in a tavern after
a drink of bourbon he began generating ideas of
how to build this computing device. It would be
electronically operated and would compute by
direct logical action rather than enumeration,
as in analog devices. It would use binary num-
bers rather than decimal numbers, condensers
for memory, and a regenerative process to avoid
lapses due to leakage of power.

In 1939, with a $650 grant
from the school and a new graduate
assistant named Clifford Berry, Dr.
Atanasoff began work on the f rst
prototype of the Atanasoff-Berry
Computer (ABC) in the basement
of the physics building. The f rst
working prototype was demonstrat-
ed that year.

In 1941, John Mauchly, a physicist at
Ursinus College whom Dr. Atanasoff had met
at a conference, came to Iowa State to visit the
Atanasoffs and see a demonstration of the ABC
machine. After extensive discussions, Mauchly
left with papers describing its design. Mauchly
and J. Presper Eckert continued their work on a
computation device at the Moore School of Elec-
trical Engineering at the Uni versity of Pennsyl-
vania. Their machine, the ENIAC, completed in
1945, became known as the f rst computer.

Dr. Atanasoff went to Washington in
1942 to become director of the Underwater
Acoustics Program at the Naval Ordnance
Laboratory, leaving the patent application for
the ABC computer in the hands of the Iowa
State attorneys. The patent application was
never f led and the ABC was eventually dis-
mantled without either Atanasoff or Berry
being notif ed. After the war, Dr. Atanasoff
was chief scientist for the Army Field Forces
and director of the Navy Fuse program at the
Naval Ord nance Laboratory.

In 1952, Dr. Atanasoff established the
Ordnance Engineering Corporation, a research
and engineering f rm, which was later sold to
Aerojet General Corporation. He continued
to work for Aerojet until he retired in 1961.

John Vincent Atanasoff

128
Chapter 5: Computing Components

Courtesy of ISU Photo Service

9781284069518_CH05_120_151.indd 128 06/11/14 5:58 PM

someone using a touch screen. These devices are most helpful in situa-
tions in which complex input is not needed, and they have the added
beneft of being fairly well protected. It’s far better for a waiter at a res-
taurant to make a few choices using a touch screen than to have to deal
with a keyboard, which has more keys than necessary (for the task) and
may easily get damaged from food and drink.

A touch screen not only detects the touch, but also knows where on
the screen it is being touched. Choices are often presented using graphical
buttons that the user selects by touching the screen where the button is
positioned. In this sense, using a touch screen is not much different from
using a mouse. The mouse position is tracked as the mouse is moved;
when the mouse button is clicked, the position of the mouse pointer
determines which graphical button is pushed. In a touch screen, the loca-
tion at which the screen is touched determines which button is pushed.

So how does a touch screen detect that it is being touched? Further-
more, how does it know where on the screen it is being touched? Sever-
al technologies are used today to implement touch screens. Let’s briefy
explore them.

A resistive touch screen is made up of two layers—one with vertical
lines and one with horizontal lines of electrically conductive material. The
two layers are separated by a very small amount of space. When the top

U.S. and British spies
have infltrated the
fantasy world of virtual
games. A 2008 National
Security Agency (NSA)
document declared
that virtual games
provide a “target-
rich communication
network” that allows
intelligence suspects a
way to communicate
and “hide in plain
sight.”4

Virtual games and
national security

?

142
Chapter 5: Computing Componentshistory and breadth of computing as well as the moral obligations that

come with new technology.

Biographies
Each chapter includes a short biography of someone who has made a sig-
nifcant contribution to computing as we know it. The people honored in
these sections range from those who contributed to the data layer, such
as George Boole and Ada Lovelace, to those who have contributed to
the communication layer, such as Doug Engelbart and Tim Berners-Lee.
These biographies give students a taste of history and introduce them to
the men and women who are pioneers in the world of computing.

Did You Know
Our second feature (the “Did You Know?” sections indicated by a question
mark) comprises sidebars that include interesting tidbits of information
from the past, present, and future. They are garnered from history, current

Onion: © matka_Wariatka/ShutterStock, Inc.

Preface

xxv

events, and the authors’ personal
experiences. These little vignettes
are designed to amuse, inspire, in-
trigue, and, of course, educate.

Ethical Issues
Our third feature is an “Ethical
Issues” section that is included
in each chapter. These sections
illustrate the fact that along
with the advantages of comput-
ing come responsibilities for and
consequences of its use. Privacy,
hacking, viruses, and free speech
are among the topics discussed. Following the exercises in each chapter,
a “Thought Questions” section asks stimulating questions about these
ethical issues as well as chapter content.

Color and Typography Are Signposts
The layers into which the book is divided are color coded within the text.
The opening spread for each chapter shows an image of the onion in
which the outermost color corresponds to the current layer. This color is
repeated in header bars and section numbers throughout the layer. Each
opening spread also visually indicates where the chapter is within the
layer and the book.

We have said that the frst and last chapters form bookends. Although
they are not part of the layers of the computing onion, these chapters are
color coded like the others. Open the book anywhere and you can imme-
diately tell where you are within the layers of computing.

To visually separate the abstract from the concrete in the program-
ming layer, we use different fonts for algorithms, including identifers in
running text, and program code. You know at a glance whether the dis-
cussion is at the logical (algorithmic) level or at the programming-lan-
guage level. In order to distinguish visually between an address and the
contents of an address, we color addresses in orange.

The United States Foreign Intelligence Sur-
veillance Court is a U.S. federal court that
was established under the Foreign Intel-
ligence Surveillance Act of 1978 (FISA).
The Court handles requests by federal law
enforcement agencies for surveillance war-
rants against suspected foreign intelligence
agents operating inside the United States.4

Before 2013, when Edward Snowden
leaked that the Court had ordered a sub-
sidiary of Verizon to provide detailed call
records to the National Security Agency
(NSA), most people had never heard of the
FISA Court. The next chapter examines the
controversy surrounding it.

The FISA Court comprises 11 judges who
sit for 7-year terms. The Chief Justice of the
Supreme Court appoints the judges, without
conf rmation. An application for an elec-
tronic surveillance warrant is made before
one of the judges. The court may amend this
application before granting the warrant. If the

application is denied, the government may
not take the same request to another judge.
If the U.S. Attorney General determines that
an emergency exists, he or she may authorize
the electronic surveillance but must notify a
Court judge not more than 72 hours after the
authorization. The USA PATRIOT Act of 2001
expanded the time periods during which sur-
veillance may be authorized.5

In December 2012, President Obama
signed the FISA Amendments Act Reau-
thorization Act of 2012, which extends Title
VII of FISA until December 31, 2017.

Title VII of FISA, added by the FISA
Amendments Act of 2008, created separate
procedures for targeting suspected foreign
intelligence agents, including non-U.S. per-
sons and U.S. persons reasonably believed
to be outside the United States.6

Note that the stated intent of the FISA
Court is to protect the United States as well
as the rights of U.S. citizens.

The FISA Court

ETHICAL ISSUES

Base
Binary digit
Bit
Byte
Integer
Natural number

Negative number
Number
Positional notation
Rational number
Word

KEY TERMS
Onion: © matka_Wariatka/ShutterStock, Inc.

49
Ethical Issues: The FISA Court

9781284069518_CH02_034_053.indd 49 06/11/14 4:10 PM

Onion: © matka_Wariatka/ShutterStock, Inc.

Preface

xxvi

Color is especially useful in Chapter 6, “Low-Level Programming Lan-
guages and Pseudocode.” Instructions are color coded to differentiate the
parts of an instruction. The operation code is blue, the register designa-
tion is clear, and the addressing mode specifer is green. Operands are
shaded gray. As in other chapters, addresses are in orange.

Instructor Resources
For the instructor, slides in PowerPoint format, a test bank, and answers
to the book’s end-of-chapter exercises are available for free download at
http://go.jblearning.com/CSI6e.

http://go.jblearning.com/CSI6e

xxvii

Onion: © matka_Wariatka/ShutterStock, Inc.

Our adopters have been most helpful during this revision. To those who
took the time to respond to our online survey: Thanks to all of you. We
are also grateful to the reviewers of the previous editions of the text:

Tim Bower, Kansas State University
Mikhail Brikman, Salem State College
Jacques Carette, McMaster University
Howard Francis, Pikeville College
Jim Jones, Graceland University
Murray Levy, West Los Angeles College
Lew Lowther, York University
Jeffrey McConnell, Canisius College
Richard Schlesinger, Kennesaw State University
Richard Spinello, Boston College
Herman Tavani, Rivier College
Amy Woszczynski, Kennesaw State University
C. Michael Allen, UNC Charlotte
Lofton Bullard, Florida Atlantic University
Cerian Jones, University of Alberta
Calvin Ribbens, Virginia Tech
Susan Sells, Wichita State University
R. Mark Meyer, Canisius College
Tom Wiggen, University of North Dakota
Mary Dee Harris, Chris Edmonson-Yurkanan, Ben Kuipers,
 and Glenn Downing, The University of Texas at Austin
Dave Stauffer, Penn State
John McCormick, University of Northern Iowa
Dan Joyce, Villanova University
Mike Goldwasser, St. Louis University
Andrew Harrington, Loyola University Chicago
Daniel R. Collins, Mass Bay Community College
J. Stanley Warford, Pepperdine University
Richard C. Detmer, Middle Tennessee State University
Chip Weems, University of Massachusetts Amherst
Heather Chandler, Westwood College
Mark Holthouse, Westwood High School
Robert Vermilyer, St. Thomas Aquinas College

ACKNOWLEDGMENTS

Onion: © matka_Wariatka/ShutterStock, Inc.

Acknowledgments

xxviii

Bob Blucher, Lane Community College
Dale Fletter, Folsom Lake College
Dr. Jerry Westfall, Liberty University
Dwayne Towell, Abilene Christian University
Kara Nance, University of Alaska
Lisa Michaud, Merrimack College
Jeffrey Bergamini, Mendocino College
Johanna Horowitz, Siena College
Lonnie R. Nelson, Hannibal-LaGrange University
Marie Hartlein, Montgomery County Community College
Mark Terwilliger, Lake Superior State University
Patricia Roth Pierce, Southern Polytechnic State University
Quentin J. White, Sr., Palomar College
Rakesh Arya, University of Maryland Eastern Shore
William Honig, Loyola University Chicago
Barbara Zimmerman, Villanova University
Maria Jump, PhD, King’s College
Joe Pistone, Palomar College
Derek Merck, Georgia Perimeter College.

Special thanks to Jeffrey McConnell of Canisius College, who wrote
the graphics section in Chapter 14; Herman Tavani of Rivier College, who
helped us revise the “Ethical Issues” sections; Richard Spinello of Boston
College for his essay on the ethics of blogging; and Paul Toprac, Associate
Director of Game Development at The University of Texas at Austin, for
his contributions on gaming.

We appreciate and thank our reviewers and colleagues who provided
advice and recommendations for the content in this Sixth Edition:

David Adams, Grove City College
Marie Arvi, Salisbury University
Bill Cole, Sierra College-Rocklin
Richard Croft, Eastern Oregon University
Linda Ehley, Alverno College
Janet Helwig, Dominican University
James Hicks, Los Angeles Southwest College
Aparna Mahadev, Worcester State University

Onion: © matka_Wariatka/ShutterStock, Inc.

Acknowledgments

xxix

Mia Moore, Clark Atlanta University
S. Monisha Pulimood, The College of New Jersey
Warren W. Sheaffer, Saint Paul College
Robert Yacobellis, Loyola University Chicago

We also thank the many people at Jones & Bartlett Learning who con-
tributed so much, especially Laura Pagluica, Acquisitions Editor; Taylor
Ferracane, Editorial Assistant; and Amy Rose, Director of Production.

I must also thank my tennis buddies for keeping me ft, my bridge buddies
for keeping my mind alert, and my family for keeping me grounded.
—ND

I’d like to thank my family for their support.
—JL

xxx

Onion: © matka_Wariatka/ShutterStock, Inc.

Interspersed throughout Computer Science Illuminated, Sixth Edition are two
special features of note: Ethical Issues and Biographies. A list of each is
provided below for immediate access.

ETHICAL ISSUES
Digital Divide (Chapter 1, p. 30)

The FISA Court (Chapter 2, p. 49)

The Fallout from Snowden’s Revelations (Chapter 3, p. 86)

Codes of Ethics (Chapter 4, p. 114)

Is Privacy a Thing of the Past? (Chapter 5, p. 148)

Software Piracy (Chapter 6, p.191)

Open-Source Software (Chapter 7, p. 238)

Workplace Monitoring (Chapter 8, p. 279)

Hoaxes and Scams (Chapter 9, p. 328)

Medical Privacy: HIPAA (Chapter 10, p. 360)

Privacy: Opt-In or Opt-Out? (Chapter 11, p. 388)

Politics and the Internet: The Candidate’s View (Chapter 12, p. 417)

Initial Public Offerings (Chapter 13, p. 452)

Gaming as an Addiction (Chapter 14, p. 495)

The Effects of Social Networking (Chapter 15, p. 525)

Gambling and the Internet (Chapter 16, p. 557)

Blogging (Chapter 17, p. 586)

Therac-25: Anatomy of a Disaster (Chapter 18, p. 626)

SPECIAL FEATURES

Onion: © matka_Wariatka/ShutterStock, Inc.

SPECIAL FEATURES

xxxi

BIOGRAPHIES
Ada Lovelace, the First Programmer (Chapter 1, p. 14)

Grace Murray Hopper (Chapter 2, p. 46)

Bob Bemer (Chapter 3, p. 84)

George Boole (Chapter 4, p. 95)

John Vincent Atanasoff (Chapter 5, p. 128)

Konrad Zuse (Chapter 6, p. 186)

George Polya (Chapter 7, p. 201)

John von Neumann (Chapter 8, p. 254)

Edsger Dijkstra (Chapter 9, p. 315)

Steve Jobs (Chapter 10, p. 357)

Tony Hoare (Chapter 11, p. 385)

Daniel Bricklin (Chapter 12, p. 403)

Herbert A. Simon (Chapter 13, p. 430)

Ivan Sutherland (Chapter 14, p. 468)

Doug Engelbart (Chapter 15, p. 509)

Tim Berners-Lee (Chapter 16, p. 544)

Mavis Batey (Chapter 17, p. 582)

Alan Turing (Chapter 18, p. 619)

LAYING THE
GROUNDWORK

Laying the Groundwork

 1 The Big Picture

The Information Layer

 2 Binary Values and Number Systems
 3 Data Representation

 The Hardware Layer

 4 Gates and Circuits
 5 Computing Components

The Programming Layer

 6 Low-Level Programming Languages and Pseudocode
 7 Problem Solving and Algorithms
 8 Abstract Data Types and Subprograms
 9 Object-Oriented Design and High-Level Programming Languages

The Operating Systems Layer

 10 Operating Systems
 11 File Systems and Directories

The Applications Layer

 12 Information Systems
 13 Artifcial Intelligence
 14 Simulation, Graphics, Gaming, and Other Applications

The Communications Layer

 15 Networks
 16 The World Wide Web
 17 Computer Security

In Conclusion

 18 Limitations of Computing

GOALS
After studying this chapter, you should be able to:

This book is a tour through the world of computing. We explore how com-
puters work—what they do and how they do it, from bottom to top, inside
and out. Like an orchestra, a computer system is a collection of many dif-
ferent elements, which combine to form a whole that is far more than the
sum of its parts. This chapter provides the big picture, giving an overview
of the pieces that we slowly dissect throughout the book and putting those
pieces into historical perspective.

Hardware, software, programming, web surfng, and email are prob-
ably familiar terms to you. Some of you can defne these and many more
computer-related terms explicitly, whereas others may have only a vague,
intuitive understanding of them. This chapter gets everyone on relatively
equal footing by establishing common terminology and creating the plat-
form from which we will dive into our exploration of computing.

 THE BIG PICTURE

 ■ describe the layers of a computer system.
 ■ describe the concept of abstraction and its relationship to computing.
 ■ describe the history of computer hardware and software.
 ■ describe the changing role of the computer user.
 ■ distinguish between systems programmers and applications programmers.
 ■ distinguish between computing as a tool and computing as a discipline.

3

1

1.1 Computing Systems
In this book we explore various aspects of computing systems. Note that
we use the term computing system, not just computer. A computer is a
device. A computing system, by contrast, is a dynamic entity, used to
solve problems and interact with its environment. A computing sys-
tem is composed of hardware, software, and the data that they manage.
Computer hardware is the collection of physical elements that make up
the machine and its related pieces: boxes, circuit boards, chips, wires,
disk drives, keyboards, monitors, printers, and so on. Computer software
is the collection of programs that provide the instructions that a com-
puter carries out. And at the very heart of a computer system is the
information that it manages. Without data, the hardware and software
are essentially useless.

The general goals of this book are threefold:

 ■ To give you a solid, broad understanding of how a computing
system works

 ■ To develop an appreciation for and understanding of the evolution
of modern computing systems

 ■ To give you enough information about computing so that you can
decide whether you wish to pursue the subject further

The rest of this section explains how computer systems can be divided
into abstract layers and how each layer plays a role. The next section
puts the development of computing hardware and software into histori-
cal context. This chapter concludes with a discussion about computing as
both a tool and a discipline of study.

Layers of a Computing System
A computing system is like an onion, made up of many layers. Each layer
plays a specifc role in the overall design of the system. These layers are
depicted in FIGURE 1.1 and form the general organization of this book.
This is the “big picture” that we will continually return to as we explore
different aspects of computing systems.

You rarely, if ever, take a bite out of an onion as you would an apple.
Rather, you separate the onion into concentric rings. Likewise, in this book
we explore aspects of computing one layer at a time. We peel each layer
separately and explore it by itself. Each layer, in itself, is not that com-
plicated. In fact, a computer actually does only very simple tasks—it just
does them so blindingly fast that many simple tasks can be combined to

Computing system
Computer hardware,
software, and data,
which interact to
solve problems

Computer hardware
The physical elements
of a computing
system

Computer software
The programs
that provide the
instructions that a
computer executes

Chapter 1: The Big Picture
4

accomplish larger, more complicated tasks. When
the various computer layers are all brought togeth-
er, each playing its own role, amazing things result
from the combination of these basic ideas.

Let’s discuss each of these layers briefy and
identify where in this book these ideas are ex-
plored in more detail. We essentially work our
way from the inside out, which is sometimes re-
ferred to as a bottom-up approach.

The innermost layer, information, refects the
way we represent information on a computer. In
many ways this is a purely conceptual level. In-
formation on a computer is managed using binary
digits, 1 and 0. So to understand computer pro-
cessing, we must frst understand the binary number system and its rela-
tionship to other number systems (such as the decimal system, the one
humans use on a daily basis). Then we can turn our attention to how we
take the myriad types of information we manage—numbers, text, images,
audio, and video—and represent them in a binary format. Chapters 2 and 3
explore these issues.

The next layer, hardware, consists of the physical hardware of a com-
puter system. Computer hardware includes devices such as gates and cir-
cuits, which control the fow of electricity in fundamental ways. This core
electronic circuitry gives rise to specialized hardware components such
as the computer’s central processing unit (CPU) and memory. Chapters 4
and 5 of the book discuss these topics in detail.

The programming layer deals with software, the instructions used
to accomplish computations and manage data. Programs can take many
forms, be performed at many levels, and be implemented in many lan-
guages. Yet, despite the enormous variety of programming issues, the goal
remains the same: to solve problems. Chapters 6 through 9 explore many
issues related to programming and the management of data.

Every computer has an operating system (OS) to help manage the
computer’s resources. Operating systems, such as Windows XP, Linux, or
Mac OS, help us interact with the computer system and manage the way
hardware devices, programs, and data interact. Knowing what an operat-
ing system does is key to understanding the computer in general. These
issues are discussed in Chapters 10 and 11.

The previous (inner) layers focus on making a computer system
work. The applications layer, by contrast, focuses on using the comput-
er to solve specifc real-world problems. We run application programs

FIGURE 1.1 The layers of a computing system

1.1 Computing Systems

5

Programming

Hardware

Information

Operating systems

Applications

Communications

to take advantage of the computer’s abilities in other areas, such as
helping us design a building or play a game. The spectrum of area-specifc
computer software tools is far-reaching and involves specifc subdisci-
plines of computing, such as information systems, artifcial intelligence,
and simulation. Application systems are discussed in Chapters 12,
13, and 14.

Computers no longer exist in isolation on someone’s desktop. We use
computer technology to communicate, and that communication is a fun-
damental layer at which computing systems operate. Computers are con-
nected into networks so that they can share information and resources. The
Internet, for example, evolved into a global network, so there is now almost
no place on Earth that you cannot communicate with via computing tech-
nology. The World Wide Web makes that communication relatively easy;
it has revolutionized computer use and made it accessible to the general
public. Chapters 15 and 16 discuss these important issues of computing
communication.

The use of computing technology can result in increased security haz-
ards. Some issues of security are dealt with at low levels throughout a
computer system. Many of them, though, involve keeping our personal
information secure. Chapter 17 discusses several of these issues.

Most of this book focuses on what a computer can do and how it does
it. We conclude with a discussion of what a computer cannot do, or at least
cannot do well. Computers have inherent limitations on their ability to
represent information, and they are only as good as their programming
makes them. Furthermore, it turns out that some problems cannot be
solved at all. Chapter 18 examines these limitations of computers.

Sometimes it is easy to get so caught up in the details that we lose
perspective on the big picture. Try to keep that in mind as you pro-
gress through the information in this book. Each chapter’s opening page
reminds you of where we are in the various layers of a computing system.
The details all contribute a specifc part to a larger whole. Take each step
in turn and you will be amazed at how well it all falls into place.

Abstraction
The levels of a computing system that we just examined are examples
of abstraction. An abstraction is a mental model, a way to think about
something, that removes or hides complex details. An abstraction leaves
only the information necessary to accomplish our goal. When we are
dealing with a computer on one layer, we don’t need to be thinking

Abstraction A mental
model that removes
complex details

Chapter 1: The Big Picture
6

about the details of the other layers. For example, when we are writing
a program, we don’t have to concern ourselves with how the hardware
carries out the instructions. Likewise, when we are running an applica-
tion program, we don’t have to be concerned with how that program
was written.

Numerous experiments have shown that a human being can active-
ly manage about seven (plus or minus two, depending on the person)
pieces of information in short-term memory at one time. This is called
Miller’s Law, based on the psychologist who frst investigated it.1 Other
pieces of information are available to us when we need them, but when
we focus on a new piece, something else falls back into secondary status.

This concept is similar to the number of balls a juggler can keep in the
air at one time. Human beings can mentally juggle about seven balls at
once, and when we pick up a new one, we have to drop another. Seven
may seem like a small number, but the key is that each ball can repre-
sent an abstraction, or a chunk of information. That is, each ball we are
juggling can represent a complex topic as long as we can think about it
as one idea.

We rely on abstractions every day of our lives. For example, we don’t
need to know how a car works to drive one to the store. That is, we don’t
really need to know how the engine works in detail. We need to know
only some basics about how to interact with the car: how the pedals and
knobs and steering wheel work. And we don’t even have to be thinking
about all of those things at the same time. See FIGURE 1.2 .

1.1 Computing Systems

7

FIGURE 1.2 A car engine and the abstraction that allows us to use it
© aospan/Shutterstock, Inc.; © Syda Productions/Shutterstock, Inc.

Even if we do know how an engine works, we don’t have to think
about it while driving. Imagine if, while driving, we had to constantly
think about how the spark plugs ignite the fuel that drives the pistons that
turn the crankshaft. We’d never get anywhere! A car is much too compli-
cated for us to deal with all at once. All the technical details would be too
many balls to juggle at the same time. But once we’ve abstracted the car
down to the way we interact with it, we can deal with it as one entity. The
irrelevant details are ignored, at least for the moment.

Information hiding is a concept related to abstraction. A comput-
er programmer often tries to eliminate the need or ability of one part
of a program to access information located in another part. This tech-
nique keeps the pieces of the program isolated from each other, which
reduces errors and makes each piece easier to understand. Abstraction
focuses on the external view—the way something behaves and the way
we interact with it. Information hiding is a design feature that gives rise
to the abstractions that make something easier to work with. Information
hiding and abstraction are two sides of the same coin.

Abstract art, as the name implies,
is another example of abstraction. An
abstract painting represents something
but doesn’t get bogged down in the details
of reality. Consider the painting shown
in FIGURE 1.3 , entitled Nude Descending a
Staircase. You can see only the basic hint
of the woman and the staircase, because
the artist is not interested in the details of
exactly how the woman or the staircase
looks. Those details are irrelevant to the
effect the artist is trying to create. In fact,
the realistic details would get in the way
of the issues that the artist thinks are im-
portant.

Abstraction is the key to computing.
The layers of a computing system embody
the idea of abstraction. And abstractions
keep appearing within individual layers in
various ways as well. In fact, abstraction
can be seen throughout the entire evolu-
tion of computing systems, which we ex-
plore in the next section.

Information hiding
A technique for
isolating program
pieces by eliminating
the ability for one
piece to access
the information in
another

FIGURE 1.3 Marcel Duchamp discussing his abstract painting
Nude Descending a Staircase

Chapter 1: The Big Picture
8

© CBS/Landov

1.2 The History of Computing
The historical foundation of computing goes a long way toward explain-
ing why computing systems today are designed as they are. Think of this
section as a story whose characters and events have led to the place we are
now and form the foundation of the exciting future to come. We examine
the history of computing hardware and software separately because each
has its own impact on how computing systems evolved into the layered
model we use as the outline for this book.

This history is written as a narrative, with no intent to formally defne
the concepts discussed. In subsequent chapters, we return to these con-
cepts and explore them in more detail.

A Brief History of Computing Hardware
The devices that assist humans in various forms of computation have their
roots in the ancient past and have continued to evolve until the present
day. Let’s take a brief tour through the history of computing hardware.

Early History

Many people believe that Stonehenge, the famous collection of rock
monoliths in Great Britain, is an early form of a calendar or astrological
calculator. The abacus, which appeared in the sixteenth century bc, was
developed as an instrument to record numeric values and on which a
human can perform basic arithmetic.

In the middle of the seventeenth century, Blaise Pascal, a French
mathematician, built and sold gear-driven mechanical machines, which
performed whole-number addition and subtraction. Later in the seven-
teenth century, a German mathematician, Gottfried Wilhelm von Leibniz,
built the frst mechanical device designed to do all four whole-number
operations: addition, subtraction, multiplication, and division. Unfortu-
nately, the state of mechanical gears and levers at that time was such that
the Leibniz machine was not very reliable.

In the late eighteenth century, Joseph Jacquard developed what
became known as Jacquard’s loom, used for weaving cloth. The loom used
a series of cards with holes punched in them to specify the use of specifc
colored thread and therefore dictate the design that was woven into the
cloth. Although not a computing device, Jacquard’s loom was the frst to
make use of an important form of input: the punched card.

“Who can foresee
the consequences of
such an invention?
The Analytical Engine
weaves algebraic
patterns just as the
Jacquard loom weaves
fowers and leaves.
The engine might
compose elaborate
and scientifc pieces of
music of any degree of
complexity or extent.”

—Ada, Countess of
Lovelace, 18432

Beyond all dreams
?

1.2 The History of Computing

9

