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Choice of Topics
In putting together the outline of topics for this CS0 text, we used many 
sources. We looked at course catalogue descriptions and book outlines, 
and we administered a questionnaire designed to fnd out what you, our 
colleagues, thought should be included in such a course. We asked you 
and ourselves to do the following:

 ■ Please list four topics that you feel students should master in a 
CS0 course if this is the only computer science course they will 
take during their college experience.

 ■ Please list four topics that you would like students entering your 
CS1 course to have mastered.

 ■ Please list four additional topics that you would like your CS1 
students to be familiar with.

The strong consensus that emerged from the intersections of these sources  
formed the working outline for this book. Students who master this material 
before taking CS1 have a strong foundation upon which to build their 
knowledge of computer science. Although our intention was to write a 
CS0 text, our reviewers have pointed out that the material also forms  
a strong breadth-frst background that can also serve as a companion to a 
programming-language introduction to computer science.

Rationale for Organization
This book begins with the history of hardware and software, showing 
how a computer system is like an onion. The processor and its machine 
language form the heart of the onion, and layers of software and more 
sophisticated hardware have been added around this heart, layer by layer. 
At the next layer, higher-level languages such as FORTRAN, Lisp, Pascal, 
C, C++, and Java were introduced parallel to the ever-increasing explo-
ration of the programming process, using such tools as top-down design 
and object-oriented design. Over time, our understanding of the role of 
abstract data types and their implementations matured. The operating 
system, with its resource-management techniques—including fles on 
ever-larger, faster secondary storage media—developed to surround and 
manage these programs.

PREFACE
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The next layer of the computer system “onion” is composed of sophis-
ticated general-purpose and special-purpose software systems that over-
lay the operating system. Development of these powerful programs was 
stimulated by theoretical work in computer science, which makes such 
programs possible. The fnal layer comprises networks and network soft-
ware—that is, the tools needed for computers to communicate with one 
another. The Internet and the World Wide Web put the fnishing touches 
to this layer, and this text culminates with a discussion of security issues 
affecting our interaction online.

As these layers have grown over the years, the user 
has become increasingly insulated from the computer 

system’s hardware. Each of these layers provides an 
abstraction of the computing system beneath 

it. As each layer has evolved, users of the 
new layer have joined with users of inner 

layers to create a very large workforce 
in the high-tech sector of the global 
economy. This book is designed to 
provide an overview of the layers, 
introducing the underlying hardware 
and software technologies, in order to 

give students an appreciation and un-
derstanding of all aspects of computing 

systems.
Having used history to describe the 

formation of the onion from the inside 
out, we were faced with a design choice: We 

could look at each layer in depth from the in-
side out or the outside in. The outside-in approach 

was very tempting. We could peel the layers off one at a time, moving 
from the most abstract layer to the concrete machine. However, research 
has shown that students understand concrete examples more easily than 
abstract ones, even when the students themselves are abstract thinkers. 
Thus, we have chosen to begin with the concrete machine and examine 
the layers in the order in which they were created, trusting that a thor-
ough understanding of one layer makes the transition to the next abstrac-
tion easier for the students.

Information Layer

Hardware Layer

Programming Layer

Operation Systems Layer

Applications Layer

Communications Layer
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Changes in the Sixth Edition
As always when planning a revision, we asked our colleagues, including 
many current users of the text, to give us feedback. We appreciate the 
many thoughtful and insightful responses we received.

Updates in the Sixth Edition include a considerable overhaul of Chap-
ters 15 and 16, which are about networks and the World Wide Web. We 
include new information about wireless networks, as well as updates to 
the top-level domains (TLDs) that are now available. In light of recent de-
velopments in U.S. oversight, we added a discussion about who controls 
the Internet. Screenshots and discussions of ping and traceroute utilities 
are now included, as well as an enhanced discussion about mobile com-
puting. We completely rewrote the section on HTML in Chapter 16 to re-
fect the most up-to-date practices and the use of Cascading Style Sheets 
(CSS). We updated the section on social networks and added a new dis-
cussion of web-based analytics.

In addition to these and other updates, the common features through-
out the book have been completely revised and augmented. The “Ethical 
Issues” sections at the end of each chapter have been brought up to date. 
The “Did You Know?” sidebars have been updated throughout the book 
as well, with the addition of several more that refect new and novel 
topics. Finally, the biographical sections throughout have been updated.

The Sixth Edition features a brand new design and layout, with all fg-
ures redrawn and photos updated throughout.

Of course, we also made minor revisions throughout the book to im-
prove and update the coverage, presentation, and examples.

Synopsis
Chapter 1 lays the groundwork, as described in the “Rationale for This 
Book’s Organization” section above. Chapters 2 and 3 step back and ex-
amine a layer that is embodied in the physical hardware. We call this 
the “information layer” because it refects how data is represented in the 
computer. Chapter 2 covers the binary number system and its relation-
ship to other number systems such as decimal (the one we humans use 
on a daily basis). Chapter 3 investigates how we take the myriad types of 
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data we manage—numbers, text, images, audio, and video—and repre-
sent them in a computer in binary format. 

Chapters 4 and 5 discuss the hardware layer. Computer hardware 
includes devices such as transistors, gates, and circuits, all of which con-
trol the fow of electricity in fundamental ways. This core electronic cir-
cuitry gives rise to specialized hardware components such as the comput-
er’s central processing unit (CPU) and memory. Chapter 4 covers gates 
and electronic circuits; Chapter 5 focuses on the hardware components of 
a computer and how they interact within a von Neumann architecture.

Chapters 6 through 9 examine aspects of the programming layer. 
Chapter 6 explores the concepts of both machine language and assembly 
language programming using Pep/8, a simulated computer. We discuss 
the functionality of pseudocode as a way to write algorithms. The con-
cepts of looping and selection are introduced here, expressed in pseudo-
code, and implemented in Pep/8. 

Chapter 7 examines the problem-solving process as it relates to 
both humans and computers. George Polya’s human problem-solving 
strategies guide the discussion. Top-down design is presented as a way 
to design simple algorithms. We choose classic searching and sorting  
algorithms as the context for the discussion of algorithms. Because algo-
rithms operate on data, we examine ways to structure data so that it can 
be more effciently processed. We also introduce subalgorithm (subpro-
gram) statements.

Chapter 8 takes a step further toward abstraction, exploring abstract 
data types and containers: composite structures for which we know only 
properties or behaviors. Lists, sorted lists, stacks, queues, binary search 
trees, and graphs are discussed. The section on subalgorithms is expanded 
to include reference and value parameters and parameter passing.

Chapter 9 covers the concepts of high-level programming languag-
es. Because many prominent high-level languages include functionality 
associated with object-oriented programming, we detour and frst present 
this design process. Language paradigms and the compilation process are 
discussed. Pseudocode concepts are illustrated in brief examples from four 
programming languages: Python, Visual Basic .NET, C++, and Java. 

Chapters 10 and 11 cover the operating system layer. Chapter 10 
discusses the resource management responsibilities of the operating sys-
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tem and presents some of the basic algorithms used to implement these 
tasks. Chapter 11 focuses on fle systems, including what they are and 
how they are managed by the operating system. 

Chapters 12 through 14 cover the application layer. This layer is 
made up of the general-purpose and specialized application programs 
that are available to the public for solving programs. We divide this layer 
into the sub-disciplines of computer science upon which these programs 
are based. Chapter 12 examines information systems, Chapter 13 exam-
ines artifcial intelligence, and Chapter 14 examines simulation, graphics, 
gaming, and other applications. 

Chapters 15 through 17 cover the communication layer. Chapter 15 
presents the theoretical and practical aspects of computers communicat-
ing with each other. Chapter 16 discusses the World Wide Web and the 
various technologies involved. Chapter 17 examines computer security 
and keeping information protected in the modern information age.

Chapters 2 through 17 are about what a computer can do and how. 
Chapter 18 concludes the text with a discussion of the inherent limita-
tions of computer hardware and software, including the problems that 
can and cannot be solved using a computer. We present Big-O notation as 
a way to talk about the effciency of algorithms so that the categories of 
algorithms can be discussed, and we use the Halting problem to show that 
some problems are unsolvable.

The frst and last chapters form bookends: Chapter 1 describes what a 
computing system is and Chapter 18 cautions about what computing sys-
tems cannot do. The chapters between take an in-depth look at the layers 
that make up a computing system.

Why Not a Language?
The original outline for this book included an “Introduction to Java” 
chapter. Some of our reviewers were ambivalent about including a lan-
guage at all; others wondered why Java would be included and not C++. 
We decided to leave the choice to the user. Introductory chapters, format-
ted in a manner consistent with the design of this book, are available for 
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Java, C++, JavaScript, Visual Basic. NET, 
Python, SQL, Ruby, Perl, Alice, and Pas-
cal on the book’s website and in hard 
copy through Jones & Bartlett Learning. 

If the students have enough knowl-
edge and experience to master the in-
troductory syntax and semantics of a 
language in addition to the background 
material in this book, simply have the 
students download the appropriate 
chapter. As an alternative, one or all 
of these chapters can be used to enrich 
the studies of those who have stronger 
backgrounds.

Special Features
We have included three special features 
in this text in order to emphasize the 
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John Vincent Atanasoff was born in Hamilton, 
New York, on October 4, 1903, one of nine chil-
dren. When he was about ten, his father bought 
a new slide rule. After reading the instructions, 
John Vincent became more interested in the 
mathematics involved than in the slide rule 
itself. His mother picked up on his interest and 
helped him study his father’s old college algebra 
book. He continued his interest in mathemat-
ics and science and graduated from high school 
in two years. His family moved to Old Chicara, 
Florida, where John Vincent graduated from 
the University of Florida in 1925 with a degree 
in electrical engineering because the universi-
ty didn’t offer a degree in theoretical physics. 
A year later, he received a master’s degree in 
mathematics from Iowa State College. In 1930, 
after receiving his PhD in theoretical physics, 
he returned to Iowa State College as an assis-
tant professor in mathematics and physics.

Dr. Atanasoff became interested in f nding 
a machine that could do the complex mathe-
matical work he and his graduate students were 
doing. He examined computational devices in 
existence at that time, including the Monroe 
calculator and the IBM tabulator. Upon con-
cluding that these machines were too slow and 
inaccurate, he became obsessed with f nding a 
solution. He said that at night in a tavern after 
a drink of bourbon he began generating ideas of 
how to build this computing device. It would be 
electronically operated and would compute by 
direct logical action rather than enumeration, 
as in analog devices. It would use binary num-
bers rather than decimal numbers, condensers 
for memory, and a regenerative process to avoid 
lapses due to leakage of power.

In 1939, with a $650 grant 
from the school and a new graduate 
assistant named Clifford Berry, Dr. 
Atanasoff began work on the f rst 
prototype of the Atanasoff-Berry 
Computer (ABC) in the basement 
of the physics building. The f rst 
working prototype was demonstrat-
ed that year.

In 1941, John Mauchly, a physicist at 
Ursinus College whom Dr. Atanasoff had met 
at a conference, came to Iowa State to visit the 
Atanasoffs and see a demonstration of the ABC 
machine. After extensive discussions, Mauchly 
left with papers describing its design. Mauchly 
and J. Presper Eckert continued their work on a 
computation device at the Moore School of Elec-
trical Engineering at the Uni versity of Pennsyl-
vania. Their machine, the ENIAC, completed in 
1945, became known as the f rst computer.

Dr. Atanasoff went to Washington in 
1942 to become director of the Underwater 
Acoustics Program at the Naval Ordnance 
Laboratory, leaving the patent application for 
the ABC computer in the hands of the Iowa 
State attorneys. The patent application was 
never f led and the ABC was eventually dis-
mantled without either Atanasoff or Berry 
being notif ed. After the war, Dr. Atanasoff 
was chief scientist for the Army Field Forces 
and director of the Navy Fuse program at the 
Naval Ord nance Laboratory.

In 1952, Dr. Atanasoff established the 
Ordnance Engineering Corporation, a research 
and engineering f rm, which was later sold to
Aerojet General Corporation. He continued 
to work for Aerojet until he retired in 1961.

John Vincent Atanasoff 
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someone using a touch screen. These devices are most helpful in situa-
tions in which complex input is not needed, and they have the added 
beneft of being fairly well protected. It’s far better for a waiter at a res-
taurant to make a few choices using a touch screen than to have to deal 
with a keyboard, which has more keys than necessary (for the task) and 
may easily get damaged from food and drink.

A touch screen not only detects the touch, but also knows where on 
the screen it is being touched. Choices are often presented using graphical 
buttons that the user selects by touching the screen where the button is 
positioned. In this sense, using a touch screen is not much different from 
using a mouse. The mouse position is tracked as the mouse is moved; 
when the mouse button is clicked, the position of the mouse pointer 
determines which graphical button is pushed. In a touch screen, the loca-
tion at which the screen is touched determines which button is pushed.

So how does a touch screen detect that it is being touched? Further-
more, how does it know where on the screen it is being touched? Sever-
al technologies are used today to implement touch screens. Let’s briefy 
explore them.

A resistive touch screen is made up of two layers—one with vertical 
lines and one with horizontal lines of electrically conductive material. The 
two layers are separated by a very small amount of space. When the top 

U.S. and British spies 
have infltrated the 
fantasy world of virtual 
games. A 2008 National 
Security Agency (NSA) 
document declared 
that virtual games 
provide a “target-
rich communication 
network” that allows 
intelligence suspects a 
way to communicate 
and “hide in plain 
sight.”4

Virtual games and 
national security

?
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come with new technology.

Biographies
Each chapter includes a short biography of someone who has made a sig-
nifcant contribution to computing as we know it. The people honored in 
these sections range from those who contributed to the data layer, such 
as George Boole and Ada Lovelace, to those who have contributed to 
the communication layer, such as Doug Engelbart and Tim Berners-Lee. 
These biographies give students a taste of history and introduce them to 
the men and women who are pioneers in the world of computing.

Did You Know
Our second feature (the “Did You Know?” sections indicated by a question 
mark) comprises sidebars that include interesting tidbits of information 
from the past, present, and future. They are garnered from history, current 
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events, and the authors’ personal 
experiences. These little vignettes 
are designed to amuse, inspire, in-
trigue, and, of course, educate.

Ethical Issues
Our third feature is an “Ethical 
Issues” section that is included  
in each chapter. These sections 
illustrate the fact that along 
with the advantages of comput-
ing come responsibilities for and 
consequences of its use. Privacy, 
hacking, viruses, and free speech 
are among the topics discussed. Following the exercises in each chapter,  
a “Thought Questions” section asks stimulating questions about these 
ethical issues as well as chapter content.

Color and Typography Are Signposts
The layers into which the book is divided are color coded within the text. 
The opening spread for each chapter shows an image of the onion in 
which the outermost color corresponds to the current layer. This color is 
repeated in header bars and section numbers throughout the layer. Each 
opening spread also visually indicates where the chapter is within the 
layer and the book. 

We have said that the frst and last chapters form bookends. Although 
they are not part of the layers of the computing onion, these chapters are 
color coded like the others. Open the book anywhere and you can imme-
diately tell where you are within the layers of computing.

To visually separate the abstract from the concrete in the program-
ming layer, we use different fonts for algorithms, including identifers in 
running text, and program code. You know at a glance whether the dis-
cussion is at the logical (algorithmic) level or at the programming-lan-
guage level. In order to distinguish visually between an address and the 
contents of an address, we color addresses in orange.

The United States Foreign Intelligence Sur-
veillance Court is a U.S. federal court that 
was established under the Foreign Intel-
ligence Surveillance Act of 1978 (FISA). 
The Court handles requests by federal law 
enforcement agencies for surveillance war-
rants against suspected foreign intelligence 
agents operating inside the United States.4

Before 2013, when Edward Snowden 
leaked that the Court had ordered a sub-
sidiary of Verizon to provide detailed call 
records to the National Security Agency 
(NSA), most people had never heard of the 
FISA Court. The next chapter examines the 
controversy surrounding it.

The FISA Court comprises 11 judges who 
sit for 7-year terms. The Chief Justice of the 
Supreme Court appoints the judges, without 
conf rmation. An application for an elec-
tronic surveillance warrant is made before 
one of the judges. The court may amend this 
application before granting the warrant. If the 

application is denied, the government may 
not take the same request to another judge. 
If the U.S. Attorney General determines that 
an emergency exists, he or she may authorize 
the electronic surveillance but must notify a 
Court judge not more than 72 hours after the 
authorization. The USA PATRIOT Act of 2001 
expanded the time periods during which sur-
veillance may be authorized.5

In December 2012, President Obama 
signed the FISA Amendments Act Reau-
thorization Act of 2012, which extends Title 
VII of FISA until December 31, 2017.

Title VII of FISA, added by the FISA 
Amendments Act of 2008, created separate 
procedures for targeting suspected foreign 
intelligence agents, including non-U.S. per-
sons and U.S. persons reasonably believed 
to be outside the United States.6

Note that the stated intent of the FISA 
Court is to protect the United States as well 
as the rights of U.S. citizens.

The FISA Court

ETHICAL ISSUES

Base
Binary digit
Bit
Byte
Integer
Natural number

Negative number
Number
Positional notation
Rational number
Word

KEY TERMS
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Color is especially useful in Chapter 6, “Low-Level Programming Lan-
guages and Pseudocode.” Instructions are color coded to differentiate the 
parts of an instruction. The operation code is blue, the register designa-
tion is clear, and the addressing mode specifer is green. Operands are 
shaded gray. As in other chapters, addresses are in orange.

Instructor Resources
For the instructor, slides in PowerPoint format, a test bank, and answers 
to the book’s end-of-chapter exercises are available for free download at 
http://go.jblearning.com/CSI6e.

http://go.jblearning.com/CSI6e
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GOALS
After studying this chapter, you should be able to:

This book is a tour through the world of computing. We explore how com-
puters work—what they do and how they do it, from bottom to top, inside 
and out. Like an orchestra, a computer system is a collection of many dif-
ferent elements, which combine to form a whole that is far more than the 
sum of its parts. This chapter provides the big picture, giving an overview 
of the pieces that we slowly dissect throughout the book and putting those 
pieces into historical perspective.

Hardware, software, programming, web surfng, and email are prob-
ably familiar terms to you. Some of you can defne these and many more 
computer-related terms explicitly, whereas others may have only a vague, 
intuitive understanding of them. This chapter gets everyone on relatively 
equal footing by establishing common terminology and creating the plat-
form from which we will dive into our exploration of computing.

  THE BIG PICTURE

 ■ describe the layers of a computer system.
 ■ describe the concept of abstraction and its relationship to computing.
 ■ describe the history of computer hardware and software.
 ■ describe the changing role of the computer user.
 ■ distinguish between systems programmers and applications programmers.
 ■ distinguish between computing as a tool and computing as a discipline.

3
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1.1 Computing Systems
In this book we explore various aspects of computing systems. Note that 
we use the term computing system, not just computer. A computer is a 
device. A computing system, by contrast, is a dynamic entity, used to 
solve problems and interact with its environment. A computing sys-
tem is composed of hardware, software, and the data that they manage. 
Computer hardware is the collection of physical elements that make up 
the machine and its related pieces: boxes, circuit boards, chips, wires, 
disk drives, keyboards, monitors, printers, and so on. Computer software 
is the collection of programs that provide the instructions that a com-
puter carries out. And at the very heart of a computer system is the 
information that it manages. Without data, the hardware and software 
are essentially useless.

The general goals of this book are threefold:

 ■ To give you a solid, broad understanding of how a computing 
system works

 ■ To develop an appreciation for and understanding of the evolution 
of modern computing systems

 ■ To give you enough information about computing so that you can 
decide whether you wish to pursue the subject further

The rest of this section explains how computer systems can be divided 
into abstract layers and how each layer plays a role. The next section 
puts the development of computing hardware and software into histori-
cal context. This chapter concludes with a discussion about computing as 
both a tool and a discipline of study.

Layers of a Computing System
A computing system is like an onion, made up of many layers. Each layer 
plays a specifc role in the overall design of the system. These layers are 
depicted in FIGURE 1.1  and form the general organization of this book. 
This is the “big picture” that we will continually return to as we explore 
different aspects of computing systems.

You rarely, if ever, take a bite out of an onion as you would an apple. 
Rather, you separate the onion into concentric rings. Likewise, in this book 
we explore aspects of computing one layer at a time. We peel each layer 
separately and explore it by itself. Each layer, in itself, is not that com-
plicated. In fact, a computer actually does only very simple tasks—it just 
does them so blindingly fast that many simple tasks can be combined to 

Computing system 
Computer hardware, 
software, and data, 
which interact to 
solve problems

Computer hardware 
The physical elements 
of a computing 
system

Computer software 
The programs 
that provide the 
instructions that a 
computer executes

Chapter 1:  The Big Picture
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accomplish larger, more complicated tasks. When 
the various computer layers are all brought togeth-
er, each playing its own role, amazing things result 
from the combination of these basic ideas.

Let’s discuss each of these layers briefy and 
identify where in this book these ideas are ex-
plored in more detail. We essentially work our 
way from the inside out, which is sometimes re-
ferred to as a bottom-up approach.

The innermost layer, information, refects the 
way we represent information on a computer. In 
many ways this is a purely conceptual level. In-
formation on a computer is managed using binary 
digits, 1 and 0. So to understand computer pro-
cessing, we must frst understand the binary number system and its rela-
tionship to other number systems (such as the decimal system, the one 
humans use on a daily basis). Then we can turn our attention to how we 
take the myriad types of information we manage—numbers, text, images, 
audio, and video—and represent them in a binary format. Chapters 2 and 3 
explore these issues.

The next layer, hardware, consists of the physical hardware of a com-
puter system. Computer hardware includes devices such as gates and cir-
cuits, which control the fow of electricity in fundamental ways. This core 
electronic circuitry gives rise to specialized hardware components such 
as the computer’s central processing unit (CPU) and memory. Chapters 4 
and 5 of the book discuss these topics in detail.

The programming layer deals with software, the instructions used 
to accomplish computations and manage data. Programs can take many 
forms, be performed at many levels, and be implemented in many lan-
guages. Yet, despite the enormous variety of programming issues, the goal 
remains the same: to solve problems. Chapters 6 through 9 explore many 
issues related to programming and the management of data.

Every computer has an operating system (OS) to help manage the 
computer’s resources. Operating systems, such as Windows XP, Linux, or 
Mac OS, help us interact with the computer system and manage the way 
hardware devices, programs, and data interact. Knowing what an operat-
ing system does is key to understanding the computer in general. These 
issues are discussed in Chapters 10 and 11.

The previous (inner) layers focus on making a computer system 
work. The applications layer, by contrast, focuses on using the comput-
er to solve specifc real-world problems. We run application programs 

FIGURE 1.1 The layers of a computing system
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to take advantage of the computer’s abilities in other areas, such as 
helping us design a building or play a game. The spectrum of area-specifc  
computer software tools is far-reaching and involves specifc subdisci-
plines of computing, such as information systems, artifcial intelligence, 
and simulation. Application systems are discussed in Chapters 12,  
13, and 14.

Computers no longer exist in isolation on someone’s desktop. We use 
computer technology to communicate, and that communication is a fun-
damental layer at which computing systems operate. Computers are con-
nected into networks so that they can share information and resources. The 
Internet, for example, evolved into a global network, so there is now almost 
no place on Earth that you cannot communicate with via computing tech-
nology. The World Wide Web makes that communication relatively easy; 
it has revolutionized computer use and made it accessible to the general  
public. Chapters 15 and 16 discuss these important issues of computing 
communication.

The use of computing technology can result in increased security haz-
ards. Some issues of security are dealt with at low levels throughout a 
computer system. Many of them, though, involve keeping our personal 
information secure. Chapter 17 discusses several of these issues.

Most of this book focuses on what a computer can do and how it does 
it. We conclude with a discussion of what a computer cannot do, or at least 
cannot do well. Computers have inherent limitations on their ability to 
represent information, and they are only as good as their programming 
makes them. Furthermore, it turns out that some problems cannot be 
solved at all. Chapter 18 examines these limitations of computers.

Sometimes it is easy to get so caught up in the details that we lose 
perspective on the big picture. Try to keep that in mind as you pro-
gress through the information in this book. Each chapter’s opening page 
reminds you of where we are in the various layers of a computing system. 
The details all contribute a specifc part to a larger whole. Take each step 
in turn and you will be amazed at how well it all falls into place.

Abstraction
The levels of a computing system that we just examined are examples 
of abstraction. An abstraction is a mental model, a way to think about 
something, that removes or hides complex details. An abstraction leaves 
only the information necessary to accomplish our goal. When we are 
dealing with a computer on one layer, we don’t need to be thinking 

Abstraction A mental 
model that removes 
complex details

Chapter 1:  The Big Picture
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about the details of the other layers. For example, when we are writing 
a program, we don’t have to concern ourselves with how the hardware 
carries out the instructions. Likewise, when we are running an applica-
tion program, we don’t have to be concerned with how that program 
was written.

Numerous experiments have shown that a human being can active-
ly manage about seven (plus or minus two, depending on the person) 
pieces of information in short-term memory at one time. This is called 
Miller’s Law, based on the psychologist who frst investigated it.1 Other 
pieces of information are available to us when we need them, but when 
we focus on a new piece, something else falls back into secondary status.

This concept is similar to the number of balls a juggler can keep in the 
air at one time. Human beings can mentally juggle about seven balls at 
once, and when we pick up a new one, we have to drop another. Seven 
may seem like a small number, but the key is that each ball can repre-
sent an abstraction, or a chunk of information. That is, each ball we are 
juggling can represent a complex topic as long as we can think about it 
as one idea.

We rely on abstractions every day of our lives. For example, we don’t 
need to know how a car works to drive one to the store. That is, we don’t 
really need to know how the engine works in detail. We need to know 
only some basics about how to interact with the car: how the pedals and 
knobs and steering wheel work. And we don’t even have to be thinking 
about all of those things at the same time. See FIGURE 1.2 .

1.1 Computing Systems
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FIGURE 1.2 A car engine and the abstraction that allows us to use it
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Even if we do know how an engine works, we don’t have to think 
about it while driving. Imagine if, while driving, we had to constantly 
think about how the spark plugs ignite the fuel that drives the pistons that 
turn the crankshaft. We’d never get anywhere! A car is much too compli-
cated for us to deal with all at once. All the technical details would be too 
many balls to juggle at the same time. But once we’ve abstracted the car 
down to the way we interact with it, we can deal with it as one entity. The 
irrelevant details are ignored, at least for the moment.

Information hiding is a concept related to abstraction. A comput-
er programmer often tries to eliminate the need or ability of one part 
of a program to access information located in another part. This tech-
nique keeps the pieces of the program isolated from each other, which 
reduces errors and makes each piece easier to understand. Abstraction 
focuses on the external view—the way something behaves and the way 
we interact with it. Information hiding is a design feature that gives rise 
to the abstractions that make something easier to work with. Information 
hiding and abstraction are two sides of the same coin.

Abstract art, as the name implies, 
is another example of abstraction. An 
abstract painting represents something 
but doesn’t get bogged down in the details 
of reality. Consider the painting shown 
in FIGURE 1.3 , entitled Nude Descending a 
Staircase. You can see only the basic hint 
of the woman and the staircase, because 
the artist is not interested in the details of 
exactly how the woman or the staircase 
looks. Those details are irrelevant to the 
effect the artist is trying to create. In fact, 
the realistic details would get in the way 
of the issues that the artist thinks are im-
portant.

Abstraction is the key to computing. 
The layers of a computing system  embody 
the idea of abstraction. And abstractions 
keep appearing within  individual layers in 
various ways as well. In fact, abstraction 
can be seen throughout the entire evolu-
tion of computing systems, which we ex-
plore in the next section.

Information hiding 
A technique for 
isolating program 
pieces by eliminating 
the ability for one 
piece to access 
the information in 
another

FIGURE 1.3 Marcel Duchamp discussing his abstract painting 
Nude Descending a Staircase

Chapter 1:  The Big Picture
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1.2 The History of Computing
The historical foundation of computing goes a long way toward explain-
ing why computing systems today are designed as they are. Think of this 
section as a story whose characters and events have led to the place we are 
now and form the foundation of the exciting future to come. We examine 
the history of computing hardware and software separately because each 
has its own impact on how computing systems evolved into the layered 
model we use as the outline for this book.

This history is written as a narrative, with no intent to formally defne 
the concepts discussed. In subsequent chapters, we return to these con-
cepts and explore them in more detail.

A Brief History of Computing Hardware
The devices that assist humans in various forms of computation have their 
roots in the ancient past and have continued to evolve until the present 
day. Let’s take a brief tour through the history of computing hardware.

Early History

Many people believe that Stonehenge, the famous collection of rock 
monoliths in Great Britain, is an early form of a calendar or astrological 
calculator. The abacus, which appeared in the sixteenth century bc, was 
developed as an instrument to record numeric values and on which a 
human can perform basic arithmetic.

In the middle of the seventeenth century, Blaise Pascal, a French 
mathematician, built and sold gear-driven mechanical machines, which 
performed whole-number addition and subtraction. Later in the seven-
teenth century, a German mathematician, Gottfried Wilhelm von Leibniz, 
built the frst mechanical device designed to do all four whole-number 
operations: addition, subtraction, multiplication, and division. Unfortu-
nately, the state of mechanical gears and levers at that time was such that 
the Leibniz machine was not very reliable.

In the late eighteenth century, Joseph Jacquard developed what 
became known as Jacquard’s loom, used for weaving cloth. The loom used 
a series of cards with holes punched in them to specify the use of specifc 
colored thread and therefore dictate the design that was woven into the 
cloth. Although not a computing device, Jacquard’s loom was the frst to 
make use of an important form of input: the punched card.

“Who can foresee 
the consequences of 
such an invention? 
The Analytical Engine 
weaves algebraic 
patterns just as the 
Jacquard loom weaves 
fowers and leaves.  
The engine might 
compose elaborate 
and scientifc pieces of 
music of any degree of 
complexity or extent.”

—Ada, Countess of 
Lovelace, 18432

Beyond all dreams
?
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